The Einstein formula, a relation between mass and energy
The energy released by a chemical reaction is generated by variations of ‘internal’ energies. A good example is the combustion of carbon: C + O² => CO²
The calories released by logs burning in a chimney are the result of an internal energy loss between the initial state of carbon and oxygen and the final state of carbon dioxide. Where do these ‘internal’ energies come from?
The E in Einstein’s famous equation E=MC² represents this internal energy (sometimes referred to as the mass energy) :
This energy is equivalent to the mass M of an object multiplied by the square of the speed of light c. The value of c, some 300 million meters per second, is one of the largest and most impressive natural constants. The multiplying factor of c to the square is therefore enormous. It needs only takes minuscule changes in the value of M to generate the energies we see in our chimneys, the engines of our cars, or even in our factories.
In the example above, if we were to weigh the total mass of carbon and oxygen present before the reaction and compare it to the total mass of carbon dioxide produced, we would see that a tiny amount of mass is lost in the reaction. This mass difference is too small to be noticed by even the most sensitive weighing apparatus, but when multiplied by the speed of light squared it is capable of generating that friendly heat we enjoy in the fireplace.
In the case of radioactive disintegrations and nuclear phenomena, the liberated energies are several hundreds of thousands or even millions of times larger than in chemical reactions. At these kinds of energies, the mass defects become perceptible. The mass difference between an alpha particle and the 2 protons and 2 neutrons that make it up is almost 1%. A uranium nucleus that undergoes fission therefore loses just under one thousandth of its mass.
Learn more :
Other articles on the subject « The atomic world »
The Atom
An almost empty space with mass concentrated in a tiny nucleus The atom is often viewed as a mini[...]
The electron
The best known of elementary particles The electron is an elementary particle that plays a fundam[...]
Atomic Energy Levels
A shell structure …. The conquest of space has familiarized us to the concept of a satellit[...]
Photons
The elementary components of light and electromagnetic waves Light is composed of infinitesimal i[...]
Orders of Magnitude
The very small and the very large … The atom, and the nucleus in particular, belong to the [...]
Avogadro’s Number
Trillions of billions of very small atoms …. The microscopic size of atoms comes with their[...]